a2 United States Patent

US009269174B2

(10) Patent No.: US 9,269,174 B2

Frattarola et al. 45) Date of Patent: Feb. 23, 2016
(54) METHODS AND SYSTEMS FOR (56) References Cited
GENERATING A POLYGON MESH U.S. PATENT DOCUMENTS
(71) Applicant: Disney Enterprises’ Inc'S BurbankS CA 5’295’235 A * 3/1994 Newman """""""""""" 345/6 19
(Us) 2011/0002394 Al* 1/2011 Gandolphetal. 375/240.23
2011/0229033 Al* 9/2011 Muquitccccoevvrernnenee 382/171
(72) Inventors: Gary Frattarola, San Diego, CA (US);
Andi T. Smithers, San Diego, CA (US) OTHER PUBLICATIONS
) Imagination Technologies Ltd., “Power VR—A Master Class in
(73) Assignee: DISNEY ENTERPRISES, INC., Graphics Technology and Optimization”, Imagination Technologies
Burbank, CA (US) Ltd. presentation slides for Master Class in Graphics Technology and
Optimization, Jan. 14, 2012, 50 pages, found at: http://www.imgtec.
(*) Notice: Subject to any disclaimer, the term of this com/powervr/insider/powervr_presentations/
patent is extended or adjusted under 35 GDC%20HardwarAndOptimisation.pdf.
U.S.C. 154(b) by 174 days. U.S. Appl. No. 13/975,001, filed Aug. 23, 2013, Frattarola et al.
(21) Appl. No.: 13/974,882 * cited by examiner
(22) Filed: Aug. 23,2013 Primary Examiner — Antonio A Caschera
(74) Attorney, Agent, or Firm — Dorsey & Whitney LLP
(65) Prior Publication Data
(57) ABSTRACT
US 2015/0054844 A1l Feb. 26, 2015 Lo
The present application relates to methods and systems for
(51) Int.CL generating polygon meshes. One example of a method for
GO6T 11/40 (2006.01) generating a polygon mesh includes scanning a plurality of
GO6T 9/00 (200 6. o1) lines of an image to determine one or more pixel run lengths
5y US.Cl ’ of interest, building a collection of rectangles based on the
(52) US.CL) one or more pixel run lengths from the plurality of lines, and
C.PC - GO6T 1 1 40. (2013.01): GO6T 9/00 (2013.01) simplifying the collection of rectangles by combining rect-
(58) Field of Classification Search angles with similar widths and/or heights.

CPC ... HO4N 19/48; HO4N 19/93; GO6T 17/20
See application file for complete search history.

20 Claims, 7 Drawing Sheets

200
210 A;

Generate collection of scan line run lengths
based on alpha values of animage

220
Generate collection of rectandles from the
collection of scan line run lengths
230
Modify collection of rectangles
238 232
-

rectanglesinto a
plurality of rectangles

Divideoneormore |___,

-~

Combine two or more
rectangles that have
similar widths and/or
heights

240

Number of rectangles in
collection getting smaller?

Rectangle mesh complete

Bisect each rectangle to
obtain triangle mesh

U.S. Patent

Feb. 23, 2016 Sheet 1 of 7

US 9,269,174 B2

110

Scan lines of image to determine
pixel run lengths of interest

120

on pixel run lengths of interest

Build collection of rectangles based

)1 00

130

Simplify collection of rectangles

132
Combine rectangles
with similar widths >
and/or heights -~

Compare rectangles
to determine length
of shared edge

Create new rectangle
corresponding to shared
edge and one or more
rectangles corresponding
to non-shared edges

Yes

Number of rectangles in

collection getting smaller?

No

Rectangle mesh complete

Bisect each rectangle to
obtain triangle mesh

140

150

160

FIG. 1

U.S. Patent

Divide one or more 5
rectanglesintoa
plurality of rectangles

Feb. 23, 2016 Sheet 2 of 7 US 9,269,174 B2
200
210)
Generate collection of scan line run lengths
based on alpha values of an image
220
Generate collection of rectangles from the
collection of scan line run lengths
230
Modify collection of rectangles
238 232
e

Combine two or more
rectangles that have
similar widths and/or

Bisect each rectangle to
obtain triangle mesh

heights
240
Yes Number of rectangles in
collection getting smaller?
No 250
Rectangle mesh complete
260

FIG. 2

U.S. Patent

Feb. 23, 2016

Divide in X

)330-A

!

Combine in X

Divide in X

)330{

Combine in X

Dividein Y

!

CombineinY

Combine in X

)330-E

!

Divide in X

CombineinyY

!

Dividein Y

FIG. 3

Sheet 3 of 7

US 9,269,174 B2

CombineinY

)330-8

!

DivideinY

Divide in X

)330-D

DivideinY

Combine in X

!

CombineinY

Combine in X

)330-F

!

CombineinyY

Divide in X

!

DivideinY

U.S. Patent Feb. 23, 2016 Sheet 4 of 7

472 473
Y Y
471 ——> 474
FIG. 4A
476 477 479 480
Y Y Y Y
475—> | 478 481

FIG. 4B

US 9,269,174 B2

US 9,269,174 B2

Sheet S of 7

Feb. 23, 2016

U.S. Patent

-

165

685

JS§ Dld
TETTEL ger'sel | 9L
L |
ds ‘Ol
j4x44d! BET'BEL €L
L |
VS Dl 985
TETTEL 065 65| 8ET'BEL J_ €8s | 9el
(885 /85 L/
/4

¥8S

785 _/

58S

U.S. Patent Feb. 23,2016 Sheet 6 of 7 US 9,269,174 B2

692

693

FIG. 6

U.S. Patent

Feb. 23, 2016

Sheet 7 of 7

712

US 9,269,174 B2

)700

User input
devices
710 714
< Computer graphics system (
Media Central Graphics .
Display
player processor processor
<\704
Memory 702 Graphics
storage memory
708 706

FIG.7

US 9,269,174 B2

1
METHODS AND SYSTEMS FOR
GENERATING A POLYGON MESH

BACKGROUND

In computer graphics, a quad may be used to render a two
dimensional sprite onto a background. The quad is typically
defined such that it includes all of the pixels of the sprite. Such
quads, however, can include a large number of pixels that do
not add anything to the sprite—e.g., that are rendered trans-
parently onto the background. Even though rendering these
pixels does not change the background displayed on the
screen because they are transparent, the rendering hardware
still processes them, and consumes resources that could oth-
erwise be available for rendering other pixels. For example,
unnecessarily rendering pixels may waste a portion of the
finite fill rate typically available in rendering hardware. This
waste of resources is even greater when the image has an
alpha channel, because read-modify-write logic may be
required for every pixel within the quad.

In order to reduce the number of pixels that are unneces-
sarily rendered, and to thereby free up a portion of the finite
fill rate, a convex hull may be generated that convexly encap-
sulates the pixels of the sprite. The contours of the convex hull
define the boundaries of pixels that will be rendered, which
may encompass fewer transparent pixels than a simple quad.
Even a convex hull, however, may include many transparent
pixels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart for one embodiment of a method for
generating a polygon mesh.

FIG. 2 is a flowchart for one embodiment of a method for
generating a polygon mesh.

FIG. 3 is a flowchart for one embodiment of a method for
generating a polygon mesh.

FIGS. 4A and 4B illustrate scan line run lengths that may
be used during the process of generating a polygon mesh.

FIGS. 5A through 5C illustrate rectangles that may be
divided and combined during the process of generating a
polygon mesh.

FIG. 6 illustrates one example of a polygon mesh overlaid
on an image.

FIG.7is ablock diagram of a computer graphics system for
generating a polygon mesh.

DETAILED DESCRIPTION

FIG. 1 illustrates a method 100 that may be used to gener-
ate a polygon mesh for use in rendering an image on a display.
The method 100 may be performed by a computer graphics
system, such as that shown in FIG. 7 and described below.

Method 100 may begin with operation 110, in which each
of'a plurality of lines of an image is scanned to determine one
or more pixel run lengths of interest. The image may be a
raster image, a texture map, or generally any type of image.
Each line of the image may include no pixel run lengths of
interest, one pixel run length of interest, or a plurality of pixel
run lengths of interest.

The pixel run lengths of interest may be determined in
some embodiments by inspecting alpha values for pixels in
each of the plurality of lines. If, for example, the pixels of
interest are translucent pixels, the pixel run lengths of interest
will include pixels with alpha values corresponding to trans-
Iucency. If, on the other hand, the pixels of interest are opaque
pixels, the pixel run lengths of interest will include pixels with

10

15

20

25

30

35

40

45

50

55

60

65

2

alpha values corresponding to opacity. If the pixels of interest
are all visible pixels, the pixel run lengths of interest will
include pixels with alpha values corresponding to either
translucency or opacity.

In other embodiments, however, the pixel run lengths of
interest may be determined in another manner—such as by
inspecting color values. If, for example, a mesh encompass-
ing all of the white or black pixels is desired, the pixel run
lengths of interest may be determined by inspecting the color
values for pixels in each of the plurality of lines. In one
embodiment, the pixel run lengths of interest may be deter-
mined using chroma keying—for example, a specific color or
range of colors may be designated as not being of interest in
order to isolate a portion of an image from a background
corresponding to the designated color or color range.

Referring still to operation 110, each line of the image (e.g.,
each horizontal line, or alternatively each vertical line) may
be scanned until a pixel of interest is encountered. For a
horizontal scan line, the x-position of the first pixel of interest
may be noted, and the scan continues until either the scan line
ends or until a pixel is encountered that is not of interest. The
position of the last pixel of interest in that run length (or
alternatively, the length of the run from the first pixel of
interest to the last pixel of interest) is also noted. If there are
still additional pixels on the current line, scanning continues
to find additional possible run lengths, until the end of the line
is encountered—at which point the same process is repeated
for the next line, until the entire image has been scanned.

To illustrate operation 110, FIG. 4A shows a first horizon-
tal line 471 of an image. The horizontal line 471 may be
scanned until the first pixel of interest is encountered at x-po-
sition 472. The scanning then continues until the last pixel of
interest for the run length is encountered at x-location 473.
The relative positions of the two x-positions 472, 473 are
noted, indicating a pixel run length of interest 474, and scan-
ning continues. Because no further pixels of interest are
encountered on horizontal line 471, scanning proceeds to the
next horizontal line, and so on until all of the horizontal lines
have been scanned, and the relative positions of the pixel run
lengths of interest have been noted for each horizontal line.

Similarly, FIG. 4B shows a first horizontal line 475, which
includes a plurality of pixel run lengths of interest. In opera-
tion 110, horizontal line 475 may be scanned to determine the
beginning x-position 476 and ending x-position 477 of a first
pixel run length of interest 488, as well as the beginning
x-position 479 and ending x-position 480 of a second pixel
run length of interest 481.

In operation 120, a collection (e.g., a list) of rectangles is
built based on the one or more pixel run lengths from the
plurality of lines that were determined in operation 110.
Depending on which pixels were deemed of interest in opera-
tion 110, the collection of rectangles may be built by includ-
ing translucent and/or opaque pixel run lengths. A collection
of rectangles with both translucent and opaque pixel run
lengths may encompass all of the visible pixels in the image,
but no transparent pixels in the image.

The collection of rectangles may be built in operation 120
by converting each of the scan line run lengths of interest into
rectangles that are one pixel in height. Referring to FIGS. 4A
and 4B, for example, each pixel run length of interest 474,
478, 481 may be converted into a one pixel high rectangle
474, 478, 481, with the left and right sides of the rectangles
474,478, 481 defined by the respective beginning and ending
x-positions of the pixel run lengths of interest and the top and
bottom sides of the rectangles 474, 478, 481 defined by the y
position of the horizontal lines 471, 475, respectively, within
the image.

US 9,269,174 B2

3

Referring again to the method 100 illustrated in FIG. 1, in
operation 130, the collection of rectangles may be simpli-
fied—for example, the collection may be simplified in that the
overall number of rectangles in the collection is reduced
while the overall sizes of the rectangles increases. More spe-
cifically, in operation 132, one or more rectangles may be
combined with one or more other rectangles in the collection
that have similar widths and/or similar heights.

In operation 136, one or more of the rectangles in the
collection of rectangles may be compared with one or more of
the other rectangles in the collection of rectangles (such as
two adjacent rectangles) to determine whether a first length of
a shared edge between the (two adjacent) rectangles is greater
than a second length of one or both of the (two adjacent)
rectangles that is not shared between the (two adjacent) rect-
angles. If'the first length is greater than the second length, one
or more new rectangles may be created that correspond to the
shared edge, and one or more additional new rectangles may
also be created that correspond to one or more non-shared
edges of the two adjacent rectangles in operation 138.
Depending on the first and second lengths (i.e., depending on
the length of the shared and non-shared edges of the rect-
angles), operation 138 may result in a temporary increase in
the number of rectangles in the collection—as shown in
FIGS. 5A through 5C, which are described below. This
increase may, however, be counteracted in a subsequent itera-
tion of operation 132, in which rectangles with similar heights
and/or widths are combined. Alternatively, the increase may
not be counteracted in some examples.

In some embodiments of operation 136, each of the rect-
angles in the collection of rectangles may be compared with
every one of the other rectangles in the collection of rect-
angles to determine whether the rectangle of interest shares
an edge with any of the other rectangles. Similarly, in opera-
tion 138, each of the rectangles in the collection of rectangles
may be compared with every one of the other rectangles in the
collection of rectangles to determine whether the rectangle of
interest has a similar width and/or height as any of the other
rectangles.

Asdescribed below in more detail with reference to FI1G. 3,
in some examples the shared edge referenced in operation 136
and 138 may be a horizontal shared edge, or it may be a
vertical shared edge.

Referring again to operation 138, the one or more new
rectangles and the one or more additional new rectangles may
be added to the collection of rectangles, and the two adjacent
triangles from which the one or more new rectangles and the
one or more additional new rectangles were created may be
removed from the collection of rectangles.

In some embodiments, operations 132, 136, and 138 may
be performed iteratively, as described below with reference to
FIG. 3.

To illustrate operations 132, 136, 138, FIG. 5A shows two
pixel run lengths of interest 582, 583 that have been converted
into rectangles 582, 583. In operation 136, the two rectangles
582, 583 may be compared to determine the length of the
shared edge 584 between the two rectangles 582, 583—which
in FIG. 5A is greater than the combined length of non-shared
edges 585, 586. Thus, in operation 138, rectangle 582 may be
divided into rectangles 587 (corresponding to shared edge
584), 588 (corresponding to non-shared edge 586), and rect-
angle 583 may be divided into rectangles 589 (corresponding
to non-shared edge 585), 590 (corresponding to shared edge
584). Next, in operation 132, rectangles 587, 590 may be
combined into new rectangle 591 because they have a similar
width, which corresponds with shared edge 584 of rectangles

10

15

20

25

30

35

40

45

50

55

60

65

4

582, 583. FIGS. 5B and 5C also illustrate the operation of
operations 132, 136, 138 for rectangles of different relative
sizes.

Referring again to the method 100 illustrated in FIG. 1, in
operation 140, the number of rectangles in the collection may
be compared with the number of rectangles in the collection
from the previous iteration of operation 130, and if the num-
ber of rectangles in the collection has gotten smaller, flow
may return to operation 130 again. If the number of rectangles
in the collection has ceased getting smaller (e.g., it increased
as compared to the previous iteration), then flow continues to
operation 150, in which the rectangle mesh is complete. In
some examples, the completed rectangle mesh may corre-
spond to the collection of rectangles as it existed immediately
preceding the operation 130 in which the number of rect-
angles increased.

In operation 160 of method 100, the rectangles in the
rectangle mesh from operation 150 may optionally be
bisected in order to obtain a triangle mesh. The resulting
rectangle or triangle mesh may in some embodiments be a
pixel-accurate mesh that encompasses all of the pixels of
interest and none of the pixels that are not of interest. For
example, if both translucent and opaque pixels were included
in the pixel run lengths of interest in operation 110, the
resulting rectangular or triangular mesh may exactly circum-
scribe all of the visible pixels in the image and none of the
transparent pixels in the image—such as the mesh 692 that is
overlaid on the image 693 in FIG. 6.

In the event that the image is a texture map corresponding
to a sprite, either the rectangle mesh from operation 150 or the
triangle mesh from operation 160 may be used to render the
sprite on a display. Again assuming that translucent and
opaque pixels were included, using the mesh to render the
sprite may use a minimum amount of fill rate by rendering
only the visible pixels, and rendering none of the transparent
pixels. Alternatively, if two different meshes were created—
one for the translucent pixels and another for the opaque
pixels, the opaque pixels may be rendered using a write only
command, while the translucent pixels may be rendered using
a read-modify-write command, thereby again using the mini-
mum fill rate possible to render the sprite.

Alternatively, the polygon (e.g., rectangle or triangle) mesh
may be used in one or more other manners. For example, the
polygon mesh may be used as the basis for generating more
complex geometry from the image—such as extruding the
mesh to create a solid with an outline that exactly matches the
visible parts of the image. As another example, a 3D topo-
graphic map may be created using color information (as
opposed to the alpha values) of each pixel, where different
colored pixels represent different topographic altitudes.

Turning now to FIG. 2, another embodiment of a method
200 is illustrated that may be used to generate a polygon mesh
foruse in rendering an image (e.g., raster image, texture map,
etc.) on a display. Method 200 may be performed by a com-
puter graphics system, such as that shown in FIG. 7 and
described below, and may be in some respects similar to
method 100 shown in FIG. 1 and described above.

Method 200 may begin with operation 210, in which a
collection of scan line run lengths is generated based on alpha
values of an image. The collection of scan line run lengths
may be generated by scanning each row of pixels in the image
from left to right, or from right to left. Alternatively, the scan
line run lengths may be vertical—in which case they would be
generated by scanning each column of pixels in the image
from top to bottom or bottom to top. In operation 220, a
collection of rectangles may be created by associating each
respective scan line run length with a respective rectangle.

US 9,269,174 B2

5

FIGS. 4A and 4B illustrate the use of operations 210, 220
on an image. Specifically, in operation 210, scan line run
lengths 474, 478, 481 may be generated based on first and last
included pixel positions 472, 473, 476, 477, 479, 480 of
respective scan lines of respective images—with the included
pixels being determined based on the alpha values of each
pixel. In operation 220, each of the scan line run lengths 474,
478, 481 may be converted to a respective rectangle 474, 478,
481.

Returning to method 200 as illustrated in FIG. 2, the col-
lection of rectangles may be modified in operation 230. Spe-
cifically, in operation 238, one or more rectangles in the
collection of rectangles may be divided into a plurality of
rectangles. In operation 232, two or more adjacent rectangles
in the collection may be combined if they have similar widths
and/or heights.

In some embodiments, one (or more) rectangles may be
divided into the plurality of rectangles in operation 238 so that
one of the plurality of (new) rectangles can be combined with
anadjacent rectangle in operation 232. In other embodiments,
two rectangles in the collection of rectangles may each be
divided into a respective plurality of rectangles in operation
238, and one of the plurality of rectangles from a first of the
two rectangles may be combined with one of the plurality of
rectangles from a second of the two rectangles in operation
232.

In some embodiments, operations 232 and 238 may be
done iteratively—for example until the collection of rect-
angles ceases to decrease in number (see operation 240
below).

FIGS. 5A through 5C illustrate the use of operations 232,
238 on an image. In FIG. 5A specifically, rectangles 582 and
583 are each divided into rectangles 587, 588 and 589, 590,
respectively, in operation 238. In operation 238, rectangles
587 and 590 are combined into rectangle 591 because they
have a similar width.

Returning to FIG. 2, the number of rectangles in the col-
lection may be compared in operation 240 with the number of
rectangles in the collection from the previous iteration of
operation 230, and, if the number of rectangles in the collec-
tion has gotten smaller, flow may return to operation 230
again. Ifthe number of rectangles in the collection has ceased
getting smaller (e.g., it increased as compared to the previous
iteration), then flow continues to operation 250, in which the
rectangle mesh is complete. In some examples, the completed
rectangle mesh may correspond to the collection of rectangles
as it existed immediately preceding the operation 230 in
which the number of rectangles increased.

In operation 260, the rectangles in the rectangle mesh from
operation 250 may optionally be bisected in order to obtain a
triangle mesh. The polygon (e.g., rectangle, triangle) mesh
resulting from method 200 may be used in many different
manners, including those described above. FIG. 6 illustrates
one example of amesh 692 overlaid on image 693 that may be
obtained by following the operations in method 200.

With reference now to FIG. 3, the operation 130 in method
100 and the operation 230 in method 200 may take many
different forms. As previously mentioned, the respective sub-
operations 132, 136, 138 and 232, 238 may be done itera-
tively, and may be done with respect to horizontal and/or
vertical lines of an image. For example, operations 130, 230
may be performed in a horizontal dimension only, ina vertical
dimension only, in horizontal and then vertical dimensions, in
vertical then horizontal dimensions, and so forth.

Further, the relative order of sub-operations 132, 136, 138,
232, 238 within operations 130, 230 may be varied in differ-
ent embodiments. In one example, as illustrated by the flow-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

chart 330-A, operation 130 may begin with the division of
rectangles in sub-operations 136/138 performed in the X
(horizontal) dimension, followed by the combination of rect-
angles in sub-operation 132 performed in the X dimension.
Similarly, still referring to flowchart 330-A, operation 230
may begin with the division of rectangles in sub-operation
238 performed in the X dimension, followed by the combi-
nation of rectangles in sub-operation 232 performed in the X
direction.

Flowcharts 330-B, 330-C, 330-D, 330-E, and 330-F also
illustrate a few additional combinations of relative orders for
sub-operations 132, 136, 138, 232, 238 within operations
130, 230. Of course, many other combinations are possible,
including iterative combination of the sub-operations 132,
136, 138, 232, 238, as described above.

A simplified computer graphics system 700 that may be
configured to carry out the methods 100, 200 and operations
described above is illustrated in FIG. 7. Generally, the com-
puter graphics system 700 includes at least one central pro-
cessor 702 and one or more graphics processors 704. In some
embodiments, the at least one central processor 702 and the
one or more graphics processors 704 include at least one
multicore processor, such as a dual core or quad core proces-
sor, for example. In some embodiments, a plurality of pro-
cessors may be configured to operate in parallel. Additionally,
in some embodiments, the central processor 702 and the
graphic processor 704 may be part of the same group of
processing cores.

The computer graphics system 700 includes a graphics
memory 706 coupled directly to the graphics processor 704.
The graphics memory 706 functions as execution memory
and may have a relatively large memory capacity. Execution
memory may include various forms of random access
memory (RAM), such as dynamic RAM, static RAM, and the
like. In addition to the dedicated graphics memory 706,
memory/storage 708 is coupled to the central processor 702.
In some embodiments, external storage may be provided and
communicatively coupled to the computer graphics system.
Large amounts of information and data accessible by the
processor 702 may be stored on the storage device. The stor-
age device may be a hard disk drive, a solid-state drive, or the
like.

Additionally, one or more types of media players/recorders
710 are coupled to the computer graphics system 700, such as
DVD drives, compact disc drives, and so forth. In some
embodiments, the one or more media players may be inte-
grated within the system 700. Image data used to generate the
meshes described above may be stored on one or more types
of media using the media player/recorders 710 for playback
in other devices and in other environments.

User input may be provided to the system 700 via user
input devices 712. The user input devices 712 may include a
keyboard, a mouse, a track ball, a stylus, a camera, and so
forth. The user input devices 712 allow a user to control the
system 700 and provide input to the system to manipulate data
to achieve a desired result.

Further, the computer graphics system 700 includes a dis-
play 714 coupled to the graphics processor 704, such as a
plasma, LCD, CRIT, etc., display to graphically display
images and allow for interaction with a user. As such, the
computer graphics system is suited to generate polygon
meshes as described above, as well as to render one or more
images (e.g., a sprite) on the display 714 using the polygon
meshes.

The systems and associated methods in accordance with
the present disclosure have been described with reference to
particular examples thereof in order to illustrate the principles

US 9,269,174 B2

7

of operation. The above description is thus by way of illus-
tration and not by way of limitation. Various modifications
and alterations to the described examples will be apparent to
those skilled in the art in view of the teachings herein. Those
skilled in the art may, for example, be able to devise numerous
systems, arrangements and methods which, although not
explicitly shown or described herein, embody the principles
described and are thus within the spirit and scope of this
disclosure. Accordingly, it is intended that all such alter-
ations, variations, and modifications of the disclosed
examples are within the scope of this disclosure. For example,
while FIGS. 1 and 2 illustrate embodiments of methods 100,
200 for generating a polygon mesh, the variations and com-
ments described with reference to method 100 may be applied
to the operations in method 200 as appropriate, and vice
versa.

In methodologies directly or indirectly set forth herein,
various steps and operations are described in one possible
order of operation, but those skilled in the art will recognize
that the steps and operations may be rearranged, replaced, or
eliminated without necessarily departing from the spirit and
scope of the disclosed examples. Steps or acts described in
sequential order may be implemented before, after, sequen-
tially or non-sequentially as may fit the particular description.

All relative and directional references (including vertical,
horizontal, up, down, left, right, top, bottom, and so forth) are
given by way of example to aid the reader’s understanding of
the particular examples described herein—although it will be
understood that implementations of the present disclosure
may include variations on the specific relative and directional
references used based on the frame of reference of specific
implementations.

What is claimed is:

1. A method of generating a polygon mesh, comprising:

scanning by a processing element a plurality of lines of an

image to determine one or more pixel run lengths of
interest;

building by the processing element a collection of polygo-

nal mesh rectangles based on the one or more pixel run
lengths from the plurality of lines;
simplifying by the processing element the collection of
polygonal mesh rectangles by combining polygonal
mesh rectangles having at least one of a similar width or
a similar height; and

generating by the processing element a polygon mesh
based on the simplified collection of polygonal mesh
rectangles.

2. The method of claim 1, further comprising:

comparing by the processing element two adjacent polygo-

nal mesh rectangles in the collection of polygonal mesh
rectangles to determine whether a first length of a shared
edge between the two adjacent polygonal mesh rect-
angles is greater than a second length of one or both of
the two adjacent polygonal mesh rectangles that is not
shared between the two adjacent polygonal mesh rect-
angles; and

if the first length is greater than the second length, creating

by the processing element a first new polygonal mesh
rectangle corresponding to the shared edge and one or
more additional new polygonal mesh rectangles corre-
sponding to one or more non-shared edges of the two
adjacent polygonal mesh rectangles.

3. The method of claim 2, wherein each of the polygonal
mesh rectangles in the collection of polygonal mesh rect-
angles is compared by the processing element with each of the
other polygonal mesh rectangles in the collection of polygo-
nal mesh rectangles to determine whether each of the polygo-

10

15

20

25

30

35

40

45

50

55

60

65

8

nal mesh rectangles shares an edge with one or more of the
other polygonal mesh rectangles, further wherein each of the
polygonal mesh rectangles in the collection of polygonal
mesh rectangles is compared by the processing element with
each of the other polygonal mesh rectangles in the collection
of polygonal mesh rectangles to determine whether each of
the polygonal mesh rectangles has a similar width and/or
height as one or more of the other polygonal mesh rectangles.
4. The method of claim 2, wherein the shared edge is a
horizontal shared edge.
5. The method of claim 2, further comprising removing by
the processing element the two adjacent polygonal mesh rect-
angles from the collection of polygonal mesh rectangles and
adding the first new polygonal mesh rectangle and the one or
more additional new polygonal mesh rectangles to the col-
lection of polygonal mesh rectangles.
6. The method of claim 1, wherein the one or more pixel run
lengths of interest are determined by the processing element
by inspecting alpha values for pixels in the plurality of lines.
7. The method of claim 6, wherein the collection of polygo-
nal mesh rectangles is built by the processing element by
including translucent pixel run lengths.
8. The method of claim 7, wherein the collection of polygo-
nal mesh rectangles is built by the processing element by also
including opaque pixel run lengths.
9. The method of claim 8, wherein the collection of polygo-
nal mesh rectangles together encompasses all visible pixels in
the image but no transparent pixels in the image.
10. The method of claim 6, wherein the collection of
polygonal mesh rectangles is built by the processing element
by including opaque pixel run lengths.
11. The method of claim 1, further comprising rendering a
sprite on a display using the generated polygon mesh.
12. A method of generating a polygon mesh, comprising:
generating by a processing element a collection of scan line
run lengths based on alpha values of an image;

generating by the processing element a collection of
polygonal mesh rectangles by associating each respec-
tive scan line run length with a respective polygonal
mesh rectangle;

modifying by the processing element the collection of

polygonal mesh rectangles by

dividing one or more polygonal mesh rectangles in the
collection of polygonal mesh rectangles into a plural-
ity of polygonal mesh rectangles; and

combining two or more adjacent polygonal mesh rect-
angles in the collection of polygonal mesh rectangles
that have at least one of a similar width or a similar
height to generate a simplified collection of polygonal
mesh rectangles; and

generating by the processing element a polygon mesh

based on the simplified collection of polygonal mesh
rectangles.

13. The method of claim 12, wherein the one or more
polygonal mesh rectangles in the collection of polygonal
mesh rectangles is divided by the processing element into a
plurality of polygonal mesh rectangles so that one of the
plurality of polygonal mesh rectangles can be combined with
an adjacent polygonal mesh rectangle.

14. The method of claim 12, wherein two polygonal mesh
rectangles in the collection of polygonal mesh rectangles are
each divided by the processing element into a respective
plurality of polygonal mesh rectangles, and one of the plural-
ity of polygonal mesh rectangles from a first of the two
polygonal mesh rectangles is combined by the processing
element with one of the plurality of polygonal mesh rect-
angles from a second of the two polygonal mesh rectangles.

US 9,269,174 B2

9

15. The method of claim 12, wherein said steps of dividing
and combining are done by the processing element iteratively.

16. The method of claim 15, wherein said iterative steps of
dividing and combining continue until the collection of
polygonal mesh rectangles ceases to decrease in number.

17. The method of claim 15, further comprising generating
by the processing element a collection of triangles by bisect-
ing each of the polygonal mesh rectangles in the modified
collection of polygonal mesh rectangles.

18. The method of claim 12, wherein the image is a texture
map.

19. The method of claim 12, wherein the collection of scan
line run lengths is generated by the processing element by
scanning each row of pixels from left to right.

20. A system, comprising:

a processor configured to

scan a plurality of lines of an image to determine one or
more pixel run lengths of interest, build a collection of
polygonal mesh rectangles based on the one or more
pixel run lengths from the plurality of lines, simplify
the collection of polygonal mesh rectangles by com-
bining polygonal mesh rectangles at least one of a
similar width or a similar height;

generate a polygon mesh based on the simplified collec-
tion of polygonal mesh rectangles; and

a display coupled to the processing unit and configured to

render the image using the polygon mesh generated by
the processing unit.

#* #* #* #* #*

5

10

15

20

25

10

